Easy:

Character Counter: Write a program that takes a string
as input and counts the frequency of each character in
the string.

Number Patterns: Create a program that prints a pattern
of numbers in a triangle shape.

Palindrome Check: Write a function that determines if a
given string is a palindrome (reads the same forwards and
backwards).

Simple Encryption: Implement a basic encryption
algorithm that shifts the characters of a string by a fixed
number of positions.

Character Frequency Counter: Write a program that
takes a string as input and prints the frequency of each
character in the string.

Pattern Printing: Create a program that prints a pyramid
pattern of stars.

Reverse List: Write a function to reverse a given list
without using the built-in reverse() function.

Simple Encryption: Implement a basic encryption
algorithm that shifts the letters of a message by a certain
number of positions.

Intermediate:

Matrix Multiplication: Write a program that performs
matrix multiplication for two given matrices.

Text Analyzer: Create a program that reads a text file,



counts the frequency of each word, and displays the
most common words.

Binary Search: Implement a function that performs
binary search to find a target element in a sorted list.

File Handling - Copy and Merge: Write a program that
copies the contents of one text file into another and then
merges the content of two text files into a new file.

Matrix Multiplication: Write a function to multiply two
matrices without using any external libraries.

Word Palindromes: Implement a function that takes a list
of words as input and returns a list of words that are
palindromes.

File Word Counter: Create a program that reads a text
file and counts the occurrences of each word without
using external libraries.

Duplicate Elements: Write a function that finds and
removes duplicates from a given list without using built-in
functions like set().

Challenging:

Web Scraping Simulation: Create a program that
simulates web scraping by extracting specific information
from a provided HTML string.

Graph Representation and Traversal: Implement a
program that represents a graph using an adjacency
matrix or list and performs depth-first search (DFS)
traversal.

Object-Oriented Design - Game Simulation: Design a
text-based game using object-oriented programming



principles, with multiple classes representing characters,
items, and interactions.

Data Encryption: Develop a program that encrypts and
decrypts a message using a more advanced encryption
algorithm, such as the Caesar cipher with a randomized
key.

Simulation - Traffic Lights: Develop a program that
simulates a basic traffic light system with red, yellow, and
green lights.

Data Encryption: Implement a more advanced
encryption algorithm, such as the Caesar cipher with
variable shift.

Graph Connectivity: Write a function that determines if a
given undirected graph is connected, without using
external libraries.

Game of Life: Implement Conway's Game of Life, a
cellular automaton simulation, using a custom
implementation of the grid and rules.



