
Easy:

. Character Counter: Write a program that takes a string 
as input and counts the frequency of each character in 
the string.

. Number Patterns: Create a program that prints a pattern 
of numbers in a triangle shape.

. Palindrome Check: Write a function that determines if a 
given string is a palindrome (reads the same forwards and 
backwards).

. Simple Encryption: Implement a basic encryption 
algorithm that shifts the characters of a string by a fixed 
number of positions.

. Character Frequency Counter: Write a program that 
takes a string as input and prints the frequency of each 
character in the string.

. Pattern Printing: Create a program that prints a pyramid 
pattern of stars.

. Reverse List: Write a function to reverse a given list 
without using the built-in reverse() function.

. Simple Encryption: Implement a basic encryption 
algorithm that shifts the letters of a message by a certain 
number of positions.

Intermediate:

. Matrix Multiplication: Write a program that performs 
matrix multiplication for two given matrices.

. Text Analyzer: Create a program that reads a text file, 



counts the frequency of each word, and displays the 
most common words.

. Binary Search: Implement a function that performs 
binary search to find a target element in a sorted list.

. File Handling - Copy and Merge: Write a program that 
copies the contents of one text file into another and then 
merges the content of two text files into a new file.

. Matrix Multiplication: Write a function to multiply two 
matrices without using any external libraries.

. Word Palindromes: Implement a function that takes a list 
of words as input and returns a list of words that are 
palindromes.

. File Word Counter: Create a program that reads a text 
file and counts the occurrences of each word without 
using external libraries.

. Duplicate Elements: Write a function that finds and 
removes duplicates from a given list without using built-in 
functions like set().

Challenging:

. Web Scraping Simulation: Create a program that 
simulates web scraping by extracting specific information 
from a provided HTML string.

. Graph Representation and Traversal: Implement a 
program that represents a graph using an adjacency 
matrix or list and performs depth-first search (DFS) 
traversal.

. Object-Oriented Design - Game Simulation: Design a 
text-based game using object-oriented programming 



principles, with multiple classes representing characters, 
items, and interactions.

. Data Encryption: Develop a program that encrypts and 
decrypts a message using a more advanced encryption 
algorithm, such as the Caesar cipher with a randomized 
key.

. Simulation - Traffic Lights: Develop a program that 
simulates a basic traffic light system with red, yellow, and 
green lights.

. Data Encryption: Implement a more advanced 
encryption algorithm, such as the Caesar cipher with 
variable shift.

. Graph Connectivity: Write a function that determines if a 
given undirected graph is connected, without using 
external libraries.

. Game of Life: Implement Conway's Game of Life, a 
cellular automaton simulation, using a custom 
implementation of the grid and rules.


